Download this policy brief as a PDF
Regional cooperation through electricity trade improves both environmental sustainability and energy security in the Eastern Mediterranean and Middle East
Constantinos Taliotis* and Theodoros Zachariadis**
* Assistant Professor at the Cyprus Institute
** Professor at the Cyprus Institute
KEY POINTS
- We developed energy systems models for Cyprus and the entire Eastern Mediterranean and Middle East (EMME) region to explore the importance of regional cooperation through electricity trade.
- Our model results highlight the benefits offered by the development of electricity interconnections between Cyprus and neighbouring countries, as well as from a broader increase in electricity interconnectivity across the EMME region.
- Decarbonization is faster and cheaper if investments in enhanced electricity interconnections are implemented throughout the region. Savings of up to 35 billion USD are estimated for the entire EMME region until 2050 if increased electricity trade is enabled.
- Besides lowering costs and improving environmental sustainability, interconnections and electricity trade improve energy security of EMME countries. Despite political challenges, a regional action plan from interested countries can enable a proper strategy with multiple benefits.
Τα Οφέλη στο Περιβάλλον και την Ενεργειακή Ασφάλεια από την Περιφερειακή Ενεργειακή Συνεργασία στην Ανατολική Μεσόγειο και Μέση Ανατολή
ΚΥΡΙΑ ΣΗΜΕΙΑ
- Αναπτύξαμε ενεργειακά μοντέλα για την περιοχή της Ανατολικής Μεσογείου και Μέσης Ανατολής (ΑΜΜΑ) και διερευνήσαμε τις επιπτώσεις από το διασυνοριακό εμπόριο ηλεκτρισμού μεταξύ των χωρών.
- Τα αποτελέσματα αναδεικνύουν τα σημαντικά ενεργειακά και περιβαλλοντικά οφέλη από την περαιτέρω ανάπτυξη ηλεκτρικών διασυνδέσεων σε όλη την περιοχή και στην Κύπρο.
- Η πορεία προς την απεξάρτηση από τα ορυκτά καύσιμα στην ΑΜΜΑ θα είναι γρηγορότερη και φθηνότερη αν αυξηθούν οι επενδύσεις σε ηλεκτρικές διασυνδέσεις. Μέχρι το 2050, μπορούν να εξοικονομηθούν έως και 35 δις. δολάρια στην περιοχή αν αναπτυχθούν κατάλληλες υποδομές που θα επιτρέψουν αυξημένο διασυνοριακό εμπόριο ηλεκτρισμού.
- Πέρα από τη μείωση του κόστους ηλεκτροπαραγωγής στην ΑΜΜΑ και του περιβαλλοντικού οφέλους χάρη στη γρηγορότερη μείωση των εκπομπών, οι αυξημένες ηλεκτρικές διασυνδέσεις βελτιώνουν και την ενεργειακή ασφάλεια των χωρών της περιοχής. Χωρίς να αγνοούνται οι πολιτικές δυσκολίες, ένα περιφερειακό σχέδιο δράσης από ενδιαφερόμενες χώρες μπορεί να οδηγήσει σε έγκαιρο προγραμματισμό των κατάλληλων επενδύσεων που μπορούν να αποβούν πολύ επωφελείς.
Introduction
Nearly a decade has already passed from the Paris Agreement targets, but the world is still not on track to achieve the required decarbonisation. To reverse this situation, investments at an unprecedented pace and scale are needed. At the same time, European Union member states are required to formulate their National Energy and Climate Plans (NECPs), having in mind the long-term goal of net-zero emissions by 2050. The Republic of Cyprus is gradually making progress, as indicated in its latest NECP submission [1].
One of the measures envisioned in the NECP of Cyprus is the development of the Great Sea Interconnector (GSI), which will link the electricity grid of Cyprus with that of Greece, and eventually of Israel [2]. This project would end the energy isolation of Cyprus, which currently has no grid interlinkages with neighbouring countries. Similarly, an expansion of electricity interconnections is discussed in several of the countries in the broader Eastern Mediterranean and Middle East (EMME [1]) region (Figure 1), in an effort to untap the vast unexploited renewable energy potentials.
Figure 1. The EMME region.
Methodology
Scenarios
- Reference Trade: In this scenario, electricity interconnections are limited to existing projects. Trade is allowed to occur if deemed cost-effective using this infrastructure. In the case of Cyprus, it is assumed that development of the GSI is not successful.
- Enhanced Trade: In this scenario, investment in grid interconnections under discussion is allowed, thus enabling a higher volume of electricity exchange across the region. In the case of Cyprus, the GSI is developed and trade with Greece and Israel can occur by the end of 2029 and 2032 respectively.
- Late GSI: The third scenario which is only developed for the OSeMOSYS-Cyprus model, examines the impact of a delayed development of the GSI, pushing the project’s completion to the end of 2039.
Results and Discussion
Figure 2. Volume of net imports of electricity in Cyprus in each scenario in the OSeMOSYS-Cyprus model (Late GSI, Planned GSI) and in the OSeMOSYS-EMME model (EMME Enhanced). Scenarios where no interconnection is established are not shown, as no electricity can be traded.
Conclusions and Policy Recommendations
Figure 3. Electricity exchange between EMME countries in the Enhanced Trade scenario in 2050, assuming that electricity interconnections will be utilized according to a cost-optimal solution for the entire region. A gap between the ribbon and associated colour segment indicates that electricity trade is being imported to the respective country. Electricity starts flowing from a country without this discontinuity. The colour of the band is identical to that of the country of origin, which is identified by the colour of the inner-most circle.
References
[1] Republic of Cyprus, ‘Cyprus - Final updated NECP 2021-2030 (submitted in 2024)’. https://commission.europa.eu/publications/cyprus-final-updated-necp-2021-2030-submitted-2024_en
[2] IPTO, ‘Great Sea Interconnector’. http://www.admie.gr/en/i-etaireia/omilos-admie/great-sea-interconnector
[3] C. Taliotis, E. Taibi, M. Howells, H. Rogner, M. Bazilian, and M. Welsch, ‘Renewable energy technology integration for the island of Cyprus: A cost-optimization approach’, Energy, vol. 137, pp. 31–41, Oct. 2017, https://doi.org/10.1016/j.energy.2017.07.015
[4] C. Taliotis, M. Karmellos, N. Fylaktos, and T. Zachariadis, ‘Enhancing decarbonization of power generation through electricity trade in the Eastern Mediterranean and Middle East Region’, Renewable and Sustainable Energy Transition, vol. 4, p. 100060, Aug. 2023, https://doi.org/10.1016/j.rset.2023.100060.
[5] M. Howells et al., ‘OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development’, Energy Policy, vol. 39, no. 10, Art. no. 10, Oct. 2011, https://doi.org/10.1016/j.enpol.2011.06.033.
[6] F. Gardumi et al., ‘From the development of an open-source energy modelling tool to its application and the creation of communities of practice: The example of OSeMOSYS’, Energy Strategy Reviews, vol. 20, pp. 209–228, Apr. 2018, https://doi.org/10.1016/j.esr.2018.03.005.
[7] C. Taliotis, E. Giannakis, M. Karmellos, N. Fylaktos, and T. Zachariadis, ‘Estimating the economy-wide impacts of energy policies in Cyprus’, Energy Strategy Reviews, vol. 29, p. 100495, May 2020, https://doi.org/10.1016/j.esr.2020.100495.
[8] IRENA, ‘Renewable Capacity Statistics 2022’, International Renewable Energy Agency, Abu Dhabi, UAE, Apr. 2022. https://irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022
[9] AUPTDE, ‘Statistical Bulletins 2018 - 27th Edition’, Arab Union of Electricity, Amman, Jordan, 2019. https://auptde.org/en/file-download/download/public/340
[10] EEHC, ‘Annual Report 2018/2019’, Egyptian Electricity Holding Company, 2019. http://www.moee.gov.eg/english_new/EEHC_Rep/2018-2019en.pdf
[11] AFESD, ‘Electricity’, Arab Fund for Economic & Social Development. Accessed: May 20, 2022. https://www.arabfund.org/default.aspx?pageId=454
[12] GCCIA, ‘The Interconnection Project’, Gulf Cooperation Council Interconnection Authority. https://www.gccia.com.sa/p/the_interconnection_project/55
[13] European Commission, ‘Electricity interconnections with neighbouring countries’. Commission Expert Group on electricity interconnection targets, 2019. https://ec.europa.eu/energy/sites/ener/files/documents/2nd_report_ic_with_neighbouring_countries_b5.pdf
[14] IRENA, ‘Renewable Energy Outlook: Egypt’, International Renewable Energy Agency, Oct. 2018. https://www.irena.org/publications/2018/oct/renewable-energy-outlook-egypt
[15] Republic of Cyprus, ‘Cyprus Integrated National Energy and Climate Plan’, Nicosia, Cyprus, Jan. 2020. https://ec.europa.eu/energy/sites/ener/files/documents/cy_final_necp_main_en.pdf
[16] Hellenic Republic, ‘National Energy and Climate Plan’, Ministry of the Environment and Energy, Athens, Dec. 2019. https://ec.europa.eu/energy/sites/ener/files/el_final_necp_main_en.pdf
[17] KISR, ‘Kuwait Energy Outlook 2019’, Kuwait Institute for Scientific Research, 2019. https://www.undp.org/arab-states/publications/kuwait-energy-outlook-1
[18] SEU, ‘The Kingdom of Bahrain National Renewable Energy Action Plan (NREAP)’, Sustainable Energy Unit - Kingdom of Bahrain, Jan. 2017. http://sea.gov.bh/wp-content/uploads/2018/04/02_NREAP-Full-Report.pdf
[19] L. Gallo, ‘A Long-Term Forecast of Electricity Demand in Israel’. Bank of Israel - Research Department, Dec. 2017. https://www.boi.org.il/en/Research/Pages/dp201713h.aspx
[20] OPWP, ‘OPWP’s 7-Year Statement (2021 – 2027)’, Oman Power and Water Procurement CO., 2021. https://omanpwp.om/PDF/7%20Year%20Statement%20Issue%2015%202021%20-%202027.pdf
[21] IEA, ‘Iraq’s Energy Sector: A Roadmap to a Brighter Future’, International Energy Agency, Paris, France, Apr. 2019. https://www.iea.org/reports/iraqs-energy-sector-a-roadmap-to-a-brighter-future
[22] IRENA, ‘Renewable Energy Outlook: Lebanon’, International Renewable Energy Agency, Abu Dhabi, Jun. 2020. https://irena.org/publications/2020/Jun/Renewable-Energy-Outlook-Lebanon
[23] IRENA, ‘Renewable Energy Prospects: United Arab Emirates’, International Renewable Energy Agency, Abu Dhabi, Apr. 2015. https://www.irena.org/publications/2015/Apr/Renewable-Energy-Prospects-United-Arab-Emirates
[24] A. Azzuni, A. Aghahosseini, M. Ram, D. Bogdanov, U. Caldera, and C. Breyer, ‘Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050’, Sustainability, vol. 12, no. 12, Art. no. 12, Jan. 2020, https://doi.org/10.3390/su12124921.
[25] F. A. Harbi and D. Csala, ‘Saudi Arabia’s Electricity: Energy Supply and Demand Future Challenges’, in 2019 1st Global Power, Energy and Communication Conference (GPECOM), Jun. 2019, pp. 467–472. https://doi.org/10.1109/GPECOM.2019.8778554.
[26] P. Azadi, A. N. Sarmadi, A. Mahmoudzadeh, and T. Shirvani, ‘The Outlook for Natural Gas, Electricity, and Renewable Energy in Iran’, Stanford University, Working Paper #3, Apr. 2017. https://sgs.stanford.edu/publications/ outlook-natural-gas-electricity-and-renewable-energy-iran
[27] International Energy Agency, World Energy Outlook 2020. Paris, France: International Energy Agency, 2020. https://www.iea.org/reports/world-energy-outlook-2020
[28] European Commission, ‘Recommended parameters for reporting on GHG projections in 2023’. Directorate-General Climate Action, 2022.
[29] NREL, ‘Electricity Annual Technology Baseline (ATB) Data Download’, Annual Technology Baseline. https://atb-archive.nrel.gov/electricity/2020/data.php
[30] IRENA, ‘Electricity storage and renewables: Costs and markets to 2030’, p. 132, 2017.
[31] European Commission. Directorate General for Energy., European Commission. Directorate General for Climate Action., and European Commission. Directorate General for Mobility and Transport., EU Reference Scenario 2020: Energy, Transport and GHG emissions : Trends to 2050. LU: Publications Office, 2021. https://data.europa.eu/doi/10.2833/35750